Using Genetic Programming for Multiclass Classification by Simultaneously Solving Component Binary Classification Problems

نویسندگان

  • William D. Smart
  • Mengjie Zhang
چکیده

In this paper a new method is presented to solve a series of multiclass object classification problems using Genetic Programming (GP). All component two-class subproblems of the multiclass problem are solved in a single run, using a multi-objective fitness function. Probabilistic methods are used, with each evolved program required to solve only one subproblem. Programs gain a fitness related to their rank at the subproblem that they solve best. The new method is compared with two other GP based methods on four multiclass object classification problems of varying difficulty. The new method outperforms the other methods significantly in terms of both test classification accuracy and training time at the best validation performance in almost all experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiclass Proximal Support Vector Machines

This article proposes the multiclass proximal support vector machine (MPSVM) classifier, which extends the binary PSVM to the multiclass case. Unlike the one-versus-rest approach that constructs the decision rule based on multiple binary classification tasks, the proposed method considers all classes simultaneously and has better theoretical properties and empirical performance. We formulate th...

متن کامل

Solving Multiclass Classification Problems by Genetic

In this paper a multiclass classification problem solving technique based on genetic programming is presented. Classification algorithms are designed to learn a function which maps a vector of object features into one of several classes; this is done by analyzing a set of input-output examples of the function (also called “training samples”). Here we present a method based on the theory of gene...

متن کامل

Simplemkl Alain Rakotomamonjy Stéphane Canu

Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning algorithm, based on semi-infinite linear programming, has been recently proposed. This approach has opened new perspectives since it makes MKL tractable for large-scale problems, by...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

Improved Output Coding for Classification Using Continuous Relaxation

Output coding is a general method for solving multiclass problems by reducing them to multiple binary classification problems. Previous research on output coding has employed, almost solely, predefined discrete codes. We describe an algorithm that improves the performance of output codes by relaxing them to continuous codes. The relaxation procedure is cast as an optimization problem and is rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005